Model Management
Add new models + Get model info without restarting proxy.
In Config.yaml
model_list:
- model_name: text-davinci-003
litellm_params:
model: "text-completion-openai/text-davinci-003"
model_info:
metadata: "here's additional metadata on the model" # returned via GET /model/info
Get Model Information - /model/info
Retrieve detailed information about each model listed in the /model/info
endpoint, including descriptions from the config.yaml
file, and additional model info (e.g. max tokens, cost per input token, etc.) pulled from the model_info you set and the litellm model cost map. Sensitive details like API keys are excluded for security purposes.
- cURL
curl -X GET "http://0.0.0.0:4000/model/info" \
-H "accept: application/json" \
Add a New Model
Add a new model to the proxy via the /model/new
API, to add models without restarting the proxy.
- API
- Yaml
curl -X POST "http://0.0.0.0:4000/model/new" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d '{ "model_name": "azure-gpt-turbo", "litellm_params": {"model": "azure/gpt-3.5-turbo", "api_key": "os.environ/AZURE_API_KEY", "api_base": "my-azure-api-base"} }'
model_list:
- model_name: gpt-3.5-turbo ### RECEIVED MODEL NAME ### `openai.chat.completions.create(model="gpt-3.5-turbo",...)`
litellm_params: # all params accepted by litellm.completion() - https://github.com/BerriAI/litellm/blob/9b46ec05b02d36d6e4fb5c32321e51e7f56e4a6e/litellm/types/router.py#L297
model: azure/gpt-turbo-small-eu ### MODEL NAME sent to `litellm.completion()` ###
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key: "os.environ/AZURE_API_KEY_EU" # does os.getenv("AZURE_API_KEY_EU")
rpm: 6 # [OPTIONAL] Rate limit for this deployment: in requests per minute (rpm)
model_info:
my_custom_key: my_custom_value # additional model metadata
Model Parameters Structure
When adding a new model, your JSON payload should conform to the following structure:
model_name
: The name of the new model (required).litellm_params
: A dictionary containing parameters specific to the Litellm setup (required).model_info
: An optional dictionary to provide additional information about the model.
Here's an example of how to structure your ModelParams
:
{
"model_name": "my_awesome_model",
"litellm_params": {
"some_parameter": "some_value",
"another_parameter": "another_value"
},
"model_info": {
"author": "Your Name",
"version": "1.0",
"description": "A brief description of the model."
}
}
Keep in mind that as both endpoints are in [BETA], you may need to visit the associated GitHub issues linked in the API descriptions to check for updates or provide feedback:
- Get Model Information: Issue #933
- Add a New Model: Issue #964
Feedback on the beta endpoints is valuable and helps improve the API for all users.
Add Additional Model Information
If you want the ability to add a display name, description, and labels for models, just use model_info:
model_list:
- model_name: "gpt-4"
litellm_params:
model: "gpt-4"
api_key: "os.environ/OPENAI_API_KEY"
model_info: # 👈 KEY CHANGE
my_custom_key: "my_custom_value"
Usage
- Add additional information to model
model_list:
- model_name: "gpt-4"
litellm_params:
model: "gpt-4"
api_key: "os.environ/OPENAI_API_KEY"
model_info: # 👈 KEY CHANGE
my_custom_key: "my_custom_value"
- Call with
/model/info
Use a key with access to the model gpt-4
.
curl -L -X GET 'http://0.0.0.0:4000/v1/model/info' \
-H 'Authorization: Bearer LITELLM_KEY' \
- Expected Response
Returned model_info = Your custom model_info + (if exists) LITELLM MODEL INFO
How LiteLLM Model Info is found
Tell us how this can be improved!
{
"data": [
{
"model_name": "gpt-4",
"litellm_params": {
"model": "gpt-4"
},
"model_info": {
"id": "e889baacd17f591cce4c63639275ba5e8dc60765d6c553e6ee5a504b19e50ddc",
"db_model": false,
"my_custom_key": "my_custom_value", # 👈 CUSTOM INFO
"key": "gpt-4", # 👈 KEY in LiteLLM MODEL INFO/COST MAP - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json
"max_tokens": 4096,
"max_input_tokens": 8192,
"max_output_tokens": 4096,
"input_cost_per_token": 3e-05,
"input_cost_per_character": null,
"input_cost_per_token_above_128k_tokens": null,
"output_cost_per_token": 6e-05,
"output_cost_per_character": null,
"output_cost_per_token_above_128k_tokens": null,
"output_cost_per_character_above_128k_tokens": null,
"output_vector_size": null,
"litellm_provider": "openai",
"mode": "chat"
}
},
]
}